
Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

More Knowledgeable and
Expressive Chunking

Mazin Assanie
University of Michigan
33rd Soar Workshop
mazina@umich.edu

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Four Sections

1.  9.4-Minute Intro to Chunking

 New 9.4 Chunking Features

2.  General Variablization of Symbols

3.  Constraints on Variables

4.  Chunking Operator Desirability Knowledge

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

What is chunking?
•  Automatic mechanism that creates productions

which summarize problem-solving.
•  These chunks will fire in future similar situations

avoiding the same problem-solving.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

This is a slide
with no object
collision. I can
keep running.

I can fly over it
with a raccoon
suit.

I can’t jump
over that

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

This is a slide
with no object
collision. I can
keep running.

I can fly over it
with a racoon
suit.

I can’t jump
over that

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

How Chunking Learns
1.  Dependency analysis

•  Analyzes substate’s problem-solving to determine
“what’s necessary” to produce results

2.  Variablization
•  Abstracts away from specific working memory elements
•  Generalizes problem solving to other situations with

similar relationships between symbols

3.  Adds Constraints
•  Increases specificity by requiring that a variable satisfies

tests on its value

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Dependency Analysis
•  Determines all working memory elements linked

to a higher level state that were used in a
substate to produce a result.

•  A result is working memory element that is
added to a higher level state.

•  Algorithm is called backtracing.
•  This set of working memory elements compiled

by backtracing will become the left-hand side of
a chunk.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Simple Backtracing Example
•  Grading agent that subgoals to determine

whether a student passes

•  Agent has four main rules in substate
•  3 collect information used during problem-solving

•  1 uses that information and stores a result in the
top-state

•  Top state contains student info, grades, and the
average score.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

*all of these wmes are added to substate

Problem-Solving Rules in Substate
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Rule That Creates Result
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Backtracing

S
u
b
s
t
a
t
e

T
o
p

S
t
a
t
e

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Final Chunk
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

More Expressive Chunking

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Low-Hanging Fruit
•  There’s knowledge in the

original productions that we
are not utilizing.

•  Previously we erred on the
side of caution and made
very specific chunks.

•  Soar 9.4 will now use this
knowledge to make more
general yet accurate chunks.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Conditions from instantiation
that we base a chunk on

(S1 ^passing-score 75)
(S1 ^superstate nil)
(S1 ^student-info I1)
(S1 ^me-info M1)
(I1 ^test-score 92)
(I1 ^name Mary)

Chunk being formed

(<S1> ^passing-score 75)
(<S1> ^superstate nil)
(<S1> ^student-info <I1>)
(<S1> ^me-info <M1>)
(<I1> ^test-score 92)
(<I1> ^name Mary)

Variablization
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Conditions from original productions

(<s1> ^passing-score <min>)
(<s1> ^superstate nil)
(<s1> ^student-info <s2>)
(<s1> ^me-info <m1> { <> <i1> })
(<i1> ^test-score <sc> { > <min> })
(<i1> ^name <name>)

Chunk being formed

(<S1> ^passing-score 75)
(<S1> ^superstate nil)
(<S1> ^student-info <I1>)
(<S1> ^me-info <M1>)
(<I1> ^test-score 92)
(<I1> ^name Mary)

Variablization

•  Not utilizing everything that the production tells us about relationships between
symbols.

•  Not utilizing everything that the production tells us about constraints.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Conditions from original productions

(<s1> ^passing-score <min>)
(<s1> ^superstate nil)
(<s1> ^student-info <s2>)
(<s1> ^me-info <m1> { <> <i1> })
(<i1> ^test-score <sc> { > <min> })
(<i1> ^name <name>)

Chunk being formed

(<S1> ^passing-score <P1>)
(<S1> ^superstate nil)
(<S1> ^student-info <I1>)
(<S1> ^me-info <M1>)
(<I1> ^test-score <T1>)
(<I1> ^name <N1>)

Variablization

•  Utilizes everything that the production tells us about relationships between
symbols.

•  Not utilizing everything that the production tells us about constraints.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Conditions from original productions

(<s1> ^passing-score <min>)
(<s1> ^superstate nil)
(<s1> ^student-info <s2>)
(<s1> ^me-info <m1> { <> <i1> })
(<i1> ^test-score <sc> { > <min> })
(<i1> ^name <name>)

Chunk being formed

(<S1> ^passing-score <P1>)
(<S1> ^superstate nil)
(<S1> ^student-info <I1>)
(<S1> ^me-info <M1> {<> <I1>})
(<I1> ^test-score <T1> {> <P1>})
(<I1> ^name <N1>)

Variablization

•  Utilizes everything that the production tells us about relationships between
symbols.

•  Utilizes everything that the production tells us about constraints.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {chunk*apply*grade
 (state <s1> ^passing-score 75
 ^superstate nil

 ^student-info <s2>
 ^me-info <m1> { <> <s2> })

 (<s2> ^test-score 92
 ^name Mary)
 -->

 (<s1> ^decision <d1>)
 (<d1> ^name Mary

 ^score 92
 ^grade PASS)}

Comparison of Chunks
sp {chunk*apply*grade
 (state <s1> ^passing-score <p1>
 ^superstate nil

 ^student-info <s2>
 ^me-info <m1> { <> <s2> })

 (<s2> ^test-score <s3> { > <p1> }
 ^name <n1>)
 -->

 (<s1> ^decision <d1>)
 (<d1> ^name <n1>

 ^score <s3>
 ^grade PASS)}

•  Note that RHS constant symbols are also variablized based on how their
corresponding variable on the LHS is variablized.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Summary
•  Chunks will now also variablize numbers,

strings and LTIs.
•  Chunks conditions can now include complex

tests that provide constraints on those
variables.

•  Relational (>, >=, <, <=, ó)
•  Disjunction between constants
•  Conjunctions of multiple tests

25

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Implications of this Change
•  Your chunks will be more general and

can apply to a wider variety of
situations, but they should not become
over-general.

•  We expect agents will need to learn
fewer chunks that will become applicable
to future situations sooner.

•  Should be useful to all agents.
26

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

More Knowledgeable Chunking

Including Operator Preference
Knowledge In Chunks

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

A Different Agent Design

•  Proposes an operator for both PASS and
FAIL with no conditions

•  Uses four operator preference rules to
choose which grade to give

•  Has one application rule that writes to the
top-state whether the student passed

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {pref*PASS
 (if a pass operator is proposed)
 (and the student scored over 85)
à
 (PASS operator BEST)}

sp {pref*FAIL
 (if a FAIL operator is proposed)
 (and the student scored below 90)
à
 (FAIL operator BEST)}

sp {pref*PASS*if-I-like_them
 (if a FAIL operator is proposed)
 (and a PASS operator is proposed)
 (and the student scored over 75)
 (and I like the student)
à
 (PASS operator BETTER than

 FAIL operator)}

sp {pref*always-pass-self
 (if a PASS operator is proposed)
 (and I am the student)
à
 (FAIL operator REJECT)}

Problem-Solving Rules in Substate
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {propose*pass
 (if I’m in a substate)
à
 (propose PASS operator)}

sp {propose*fail
 (if I’m in a substate)
à
 (propose FAIL operator)}

sp {apply*grade
 (if I’m in a substate)
 (and PASS op is selected)
 (and we have student name)
à
 (student PASS)}

Proposals And Rule
That Creates Result

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

What We Would Like Agent To Learn

•  Chunk that says pass scores over 90
•  Chunk that says pass scores over 75 if you like

the student
•  Chunk that says always pass your own test

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

 sp {chunk*grade
 (if we have student name)
 à
 (student PASS)}

Chunk that says pass any student with a
name.

What Agent Actually Learns

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {apply*grade
 (if I’m in a substate)
 (and PASS op is selected)
à
 (student PASS)}

sp {propose*pass
 (if I’m in a substate)
à
 (propose pass operator)}

sp {chunk*grade
 (if we have student name)
à
 (student PASS)}

Why?

Chunking currently only backtraces through
these two rules to form this chunk.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

What Needs To Be Added
 •  We need a way to include why an operator

was selected into the knowledge that
summarizes the problem-solving.
•  Operator desirability knowledge

•  Must expand chunking’s dependency
analysis to include this operator desirability
knowledge

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Context-Dependent Preference Set
•  The set of relevant operator desirability

preferences that led to the selection of an
operator.

•  Every operator application instantiation in a
substate has a CDPS.

•  Chunking will now include the conditions of the
rules that produced the desirability preferences
of the CDPS in its dependency analysis.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

CDPS For PASS Operator
PASS operator BEST

PASS operator BETTER than FAIL operator

sp {pref*PASS
 (if a pass operator is proposed)
 (and the student scored over 85)
à
 (PASS operator BEST)}

sp {pref*PASS*if-I-like_them
 (if a FAIL operator is proposed)
 (and a PASS operator is proposed)
 (and the student scored over 75)
 (and I like the student)
à
 (PASS operator BETTER than FAIL
 operator)}

CDPS For PASS Operator
PASS operator BEST

PASS operator BETTER than FAIL operator

Chunking now backtraces
through the two preferences on
the left.

CDPS For PASS Operator
PASS operator BEST

PASS operator BETTER than FAIL

Chunking now backtraces
through the two preferences on
the left, which adds the following
conditions to the chunk:

1.  (the student scored over 75)
2.  (I like the student)

CDPS For A Liked Score of 89
Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {chunk*grade
 (if we have student name)
 (the student scored over 75)
 (I like the student)
à
 (student PASS)}

What An Agent Learns in 9.4

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {pref*PASS
 (if a pass operator is proposed)
 (and the student scored over 85)
à
 (PASS operator BEST)}

sp {pref*PASS*if-I-like_them
 (if a FAIL operator is proposed)
 (and a PASS operator is proposed)
 (and the student scored over 75)
 (and I like the student)
à
 (PASS operator BETTER than FAIL)}

But something was left out…

CDPS For PASS Operator
PASS operator BEST

PASS operator BETTER than FAIL

So, shouldn’t we have…

1.  (the student scored over 75)
2.  (I like the student)
3.  (and the student scored over 85)

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

How do you know which desirability
preferences will make it into a chunk?
•  Notion of “relevant operator desirability

preferences” closely linked to the
preference semantics Soar uses to choose
an operator during the decision phase

•  If a preference is used during this process,
we add it to the CDPS for that operator.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Preference Semantics

Require

Prohibit/Reject

Better/Worse

Best

Worse

Indffierent

How Soar Chooses an Operator and
Builds the CDPS

After each stage, it
adds the relevant

preferences of that
type to the CDPS

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

sp {pref*PASS
 (if a pass operator is proposed)
 (and the student scored over 85)
à
 (PASS operator BEST)}

sp {pref*PASS*if-I-like_them
 (if a FAIL operator is proposed)
 (and a PASS operator is proposed)
 (and the student scored over 75)
 (and I like the student)
à
 (PASS operator BETTER than FAIL)}

So, was something was left out?

CDPS For PASS Operator
PASS operator BEST

PASS operator BETTER than FAIL

So, shouldn’t we have…

1.  (the student scored over 75)
2.  (I like the student)
3.  (and the student scored over 85)

 No.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Implications of this Change

•  Your chunks will become more specific.

•  It may require some agent re-design.

•  Some agents that could not previously utilize
chunking, will now able to.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Nuggets
•  Improved all three sources of chunking power

1.  Dependency analysis via backtracing
•  Determines “what’s important” (+ CDPS)

2.  Variablization of ALL symbols
•  Abstracts away more elements of specific instance
•  Generalizes problem solving to other situations with

similar relationships between symbols
3.  Constraints on variables (ALL test types)

•  Increases specificity by requiring that a variable in a
chunk passes a given predicate, possibly relational

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Nuggets

•  Including operator desirability preferences in
chunks

•  Could have interesting possibilities for RL agents

•  Addresses key source of over-general chunks

•  No significant performance cost

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

Mazin Assanie	

University of Michigan Soar Group	

 University of Michigan	

Engineering and Computer Science	

Coal
•  General variablization and complex

constraints:
•  Still needs debugging. Involved significant

changes to kernel.
•  Performance cost not yet evaluated for it or

CDPS combined with it.
•  You may need to design your agent’s

problem-solving with the CDPS in mind.

Intro Backtracing Expressive Knowledgeable Soar 9.4 UI

